Brain-derived neurotrophic factor-induced phosphorylation of neurofilament-H subunit in primary cultures of embryo rat cortical neurons.
نویسندگان
چکیده
Phosphorylation of the neurofilament-H subunit (NF-H) was investigated in rat embryonic brain neurons in culture. A portion of the NF-H was phosphorylated in vivo at embryonic day 17 when brain neurons were prepared. When the neurons were isolated and cultured, the NF proteins disappeared once and then reappeared over the next several days in the following order: (1) NF-L/NF-M, (2) dephosphorylated NF-H and (3) phosphorylated NF-H. Phosphorylation of NF-H began around 4 days after cell plating, at about the time of synapse formation. Treatments that appeared to modulate the timing of synapse formation also affected the timing of NF-H phosphorylation: (1) earlier phosphorylation was observed at higher neuronal cell density, (2) earlier phosphorylation was observed in neurons cultured on a coating substrate that promotes rapid neurite extension and (3) phosphorylation was suppressed when neurite extension was inhibited by brefeldin A. Three possible synapse formation-induced events, excitation, cell-cell contact through adhesion proteins and elevated concentrations of neurotrophic factors, were examined for their possible involvement in generating the signal for NF-H phosphorylation. Neither excitation nor cell contact enhanced NF-H phosphorylation. Neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) stimulated phosphorylation of NF-H. The BDNF-stimulated phosphorylation was inhibited by an anti-BDNF antibody and K252a, an inhibitor of BDNF receptor TrkB tyrosine kinase. Among known NF-H kinases of cyclin-dependent kinase 5 (CDK5), external signal-regulated protein kinase (ERK) and stress-activated protein kinase (SAPK), CDK5 and SAPK showed an increase in kinase activity or an active form with a time course similar to NF-H phosphorylation in control culture. On the other hand, BDNF stimulated the kinase activity of CDK5 and induced appearance of an active form of ERK transiently. These results suggest a possibility that synapse formation induces NF-H phosphorylation, at least in part, through activation of CDK5 by BDNF.
منابع مشابه
Action of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملAcute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures
Objective(s):Theneuroprotective effect of lithium has been attributed to its therapeutic action. However, the role of glial cells particularly astrocytes, and the possible interactions between neurons and astrocytes in neuroprotective effects of lithium have been disregarded. Thus, the aim of this study was to evaluate the direct effects of lithium on brain derived neurotrophic factor (BDNF) an...
متن کاملP-52: Brain-Derived Neurotrophic Factor Promotes The Development of Human Ovarian Early Follicles during Growth In Vitro
Background Cryopreservation of ovarian cortex is increasingly used to preserve fertility before cancer therapy. Recently, studies show that Brain-derived neurotrophic factor (BDNF) may be involved in oocyte maturation. Brain-derived neurotrophic factor (BDNF) is member of neurotrophin family that has anti-apoptotic effects on nervous system. Recent researches show that it also plays key role in...
متن کاملBrain-derived neurotrophic factor protects rat cerebral cortical neurons from intermittent hypoxia in vitro
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal survival and growth and participates in neuronal plasticity. BDNF binds to its high affinity receptor TrkB and activates signal transduction cascades crucial for the production of cyclic adenosine mono phosphate (cAMP)-response element binding protein (CREB), which contributes to neurotrophin-mediated survival in the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 113 ( Pt 6) شماره
صفحات -
تاریخ انتشار 2000